ACCIDENT
ANALYSIS

&
PREVENTION

Accident Analysis and Prevention 39 (2007) 1192-1201

www.elsevier.com/locate/aap

Bayesian multiple testing procedures for hotspot identification

Luis F. Miranda-Moreno®*, Aurélie Labbe !, Liping Fu 92

2 Centre for Data and Analysis in Transportation, Economics Department,
Université Laval, Québec GIK7P4, Canada
Y Instituto Mexicano del Transporte, Querétaro, Mexico
¢ Mathematics and Statistics, Université Laval, Québec G1K7P4, Canada
4 Civil Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Received 10 February 2006; received in revised form 20 February 2007; accepted 18 March 2007

Abstract

Ranking a group of candidate sites and selecting from it the high-risk locations or hotspots for detailed engineering study and countermeasure
evaluation is the first step in a transport safety improvement program. Past studies have however mainly focused on the task of applying appropriate
methods for ranking locations, with few focusing on the issue of how to define selection methods or threshold rules for hotspot identification. The
primary goal of this paper is to introduce a multiple testing-based approach to the problem of selecting hotspots. Following the recent developments
in the literature, two testing procedures are studied under a Bayesian framework: Bayesian test with weights (BTW) and a Bayesian test controlling
for the posterior false discovery rate (FDR) or false negative rate (FNR). The hypotheses tests are implemented on the basis of two random effect
or Bayesian models, namely, the hierarchical Poisson/Gamma or Negative Binomial model and the hierarchical Poisson/Lognormal model. A
dataset of highway-railway grade crossings is used as an application example to illustrate the proposed procedures incorporating both the posterior
distribution of accident frequency and the posterior distribution of ranks. Results on the effects of various decision parameters used in hotspot

identification procedures are discussed.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Hotspot identification is usually the first step in a safety
improvement program, in which sites are first sorted accord-
ing to one or more ranking criteria, and a subset of sites are
then selected as high accident risk locations or hotspots. These
locations are considered as the most suitable candidates for fur-
ther safety inspections and implementation of remedial actions.
Most of the past efforts in the literature have been devoted to the
problem of determining the appropriate safety measures (e.g.,
Hauer, 1997; Miaou and Song, 2005; Persaud and Hauer, 1984;
Persaud, 1991; Persaud et al., 1999; Hauer, 1997; Cheng and
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Washington, 2005). These efforts have lead to the general con-
sensus that the safety status or accident risk at a given location
should be estimated using random effect or Bayesian models
(Schluter et al., 1997; Heydecker and Wu, 2001; Tunaru, 2002;
Miranda-Moreno et al., 2005; Miaou and Song, 2005).

In contrast, the issue of what decision rules should be used in
selecting hotspots is still widely open. Traditionally two strate-
gies are commonly followed as hotspot selection rules (Schluter
et al., 1997; Hauer et al., 2004): (1) selecting sites on the basis
of the budget available to conduct safety inspections and imple-
ment countermeasures and (2) selecting a list of sites based on
some specified cutoff value or threshold of accident risk. The for-
mer is probably the most common in practice, where hotspots
are selected sequentially from the ranked list until all budgeted
resources are exhausted. The latter ensures the selection of a list
of locations that are deemed dangerous at some critical level,
leaving variable the number of locations to be selected (Higle
and Witkowski, 1988; Schluter et al., 1997; Heydecker and Wu,
2001). This second strategy is often the result of local safety
policies that stipulate tolerance levels of accident risks. It is the
most appropriate when one wants to identify a list of hazardous


mailto:luis-f.miranda-moreno.1@ulaval.ca
mailto:Aurelie.Labbe@mat.ulaval.ca
mailto:lfu@uwaterloo.ca
dx.doi.org/10.1016/j.aap.2007.03.008

L.F. Miranda-Moreno et al. / Accident Analysis and Prevention 39 (2007) 1192-1201 1193

sites exceeding a certain threshold value, e.g., all sites having at
least a 80% of chance to exceed a certain accident rate or number
of accidents.

One of the main limitations of the budget-based strategy is
that it may result in an unnecessarily large list of sites includ-
ing a number of locations that are in fact not dangerous, or on
the contrary, may produce a short list ignoring locations which
are truly at high risk. On the other hand, the shortcoming with
the threshold-based strategy is the issue of how to define for-
mally the thresholds so that the resulting decisions are sensible
with a minimum chance for errors. Notice that for both strate-
gies an erroneous selection of relatively safe sites as hotspots
(false positives) can lead to a significant waste of already lim-
ited financial resources. Other the other hand, failing to detect
true hotspots (false negatives) may result in inefficient reduc-
tion of accidents (Higle and Hecht, 1989; Schluter et al., 1997;
Cheng and Washington, 2005). The objective of this paper is
to introduce a new strategy called Bayesian testing approach
that can be used to formally define decision rules for hotspot
identification. This method offers a rigorous way of making
decisions based on a hypothesis testing framework, so that the
number or rate of wrong decisions in the hotspot selection pro-
cess can be explicitly minimized or controlled. This multiple
testing-based methodology has not been used in transport safety
literature, but has been widely applied in areas such as genomics
and astronomy (e.g., Benjamini and Hochberg, 1995; Genovese
and Wasserman, 2002; Muller et al., 2004; Do et al., 2005; Scott
and Berger, 2006).

A literature review on hotspot identification is offered in Sec-
tion 2. The theoretical definition of the Bayesian multiple testing
is presented in Section 3. In Section 4 we define how hypothe-
ses tests can be implemented under the posterior distribution
of ranks. The hierarchical modeling framework considered here
is introduced in Section 5. A numerical example showing vari-
ous aspects of model assessment and application of the multiple
testing procedures is discussed in Section 6. Finally, Section 7
recapitulates the main conclusions and provides directions for
future research.

2. Literature review

A hotspot identification methodology includes essentially
two elements: safety measures or criteria for ranking sites of
interest and decision rules for selecting hotspots. Past research
has mostly focused on developing appropriate measures that
can be used to quantify the safety status or risk at individual
locations of interest. The simplest risk measure is raw accident
rates, such as the number or cost of accidents per vehicle-miles
traveled or per vehicle entry. Unfortunately, raw risk estima-
tors have several limitations as discussed in a number of studies
(e.g., Hauer, 1997; Miaou and Song, 2005). Specifically, a rank-
ing method relying on raw accident rates may produce large
numbers of misclassifications (e.g. selecting relatively safe loca-
tions as hotspots or vise versa) due to the random variation of
traffic accidents from year to year (Persaud and Hauer, 1984;
Persaud, 1986, 1991; Hauer, 1997; Cheng and Washington,
2005).

As an alternative, model-based approaches that apply ran-
dom effect or Bayesian models become more and more popular
in safety literature and are widely recommended for the hotspot
identification task (Schluter et al., 1997; Heydecker and Wu,
2001; Tunaru, 2002; Miranda-Moreno et al., 2005; Miaou and
Song, 2005). Following this approach, many alternative rank-
ing criteria and random effect or Bayesian models have been
proposed for hotspot identification. Among the most popular
ranking criteria are the posterior mean or rate of accident fre-
quency (Hauer and Persaud, 1984; Higle and Witkowski, 1988;
Persaud, 1991; Miranda-Moreno et al., 2005), potential of acci-
dent reduction (Persaud et al., 1999; Heydecker and Wu, 2001),
posterior probability of being the most dangerous site (Schluter
et al., 1997; Tunaru, 2002) and posterior expectation of ranks
(Tunaru, 2002; Miaou and Song, 2005). Among the alternative
models, we can mention the popular negative binomial, gener-
alized negative binomial, Poisson/Lognormal and hierarchical
Bayesian models (Miranda-Moreno et al., 2005). These models
have also been extended to account for spatial and/or temporal
patterns as well as accident severity (Tunaru, 2002; Miaou and
Song, 2005).

A number of studies have also been devoted to the issue
of relative performance of Empirical Bayesian methods and
other techniques such as the statistical quality control or confi-
dence intervals (e.g., Norden et al., 1956; Laughlin et al., 1975;
Hauer and Persaud, 1984; Persaud and Hauer, 1984; Higle and
Hecht, 1989; Cheng and Washington, 2005). Some researchers
have also proposed to incorporate accident severity or crash
costs into risk measures (e.g., Hauer et al., 2004; Geurts et
al., 2004; Miranda-Moreno, 2006). Others have classified traffic
accidents by specific characteristics such as roadway environ-
ment, weather conditions or accident types, such as turning,
side-swipe, and rear-end (Flak and Barbaresso, 1982; Sayed et
al., 1995). Furthermore, a few researchers have explored the
issue of how many years of accident data should be employed
in the analysis (May, 1964; Cheng and Washington, 2005).

Research on hotspot selection rules is however noticeably
scarce. As mentioned before, an inappropriate selection method
may lead to a significant number of misclassifications (false
positives or false negatives). This issue has been previously dis-
cussed by Higle and Hecht (1989) and Cheng and Washington
(2005). Despite its importance some simple selection rules have
commonly been adopted (Higle and Witkowski, 1988; Schluter
etal., 1997). In this research, we attempt to address this method-
ological gap by introducing a selection approach that minimizes
and/or control the number or proportion of misclassifications
explicitly.

3. Decision rules based on Bayesian multiple testing

Considering n random variables (Y7, ..., ¥,) corresponding
to n sites under study, where Y; represents the number of acci-
dents over a given time period atsite i (i=1, .. ., n). We assume
that Y; is distributed according to a probability law with density
f(yil0;), where 0; represents the mean number of accidents at
site i (parameter of interest). In Bayesian analysis, assuming a
distribution with density 7(.) on 6; allows the incorporation of



1194 L.F. Miranda-Moreno et al. / Accident Analysis and Prevention 39 (2007) 1192-1201

a prior knowledge on the behavior of 6;. This prior information
is combined with the information brought by the sample into
the posterior distribution, represented by p(6;|y;), where y; rep-
resents the observed value of Y;. The posterior distribution of 6;
is a direct application of Bayes’ theorem, and has the following
form (Carlin and Louis, 2000),

fQiloDm©) _  fGilo)m©:)
m(y;) J Fil0)m(6;)d6;”

pily) = ey

where m(y;) represents the unconditional marginal density func-
tion of y; and f(y;|0) is the observed data likelihood. A detailed
discussion on the prior distributions assumed for modeling acci-
dent data is provided in Section 5.

A set of hypotheses tests can be defined for each site i to
determine whether or not to reject the null hypothesis that a
given site is not hotspot, that is,

Hy;: 0; <k (site i is referred as non-hotspot),
Hi;: 0; >k (site i is referred as hotspot),

where k is a standard value or upper limit of the “acceptable”
accident frequency, specified by practitioners according to the
application conditions. This critical value may be established
in different ways and should reflect particular safety policies,
decision-maker’s experience, historical information, etc. Obvi-
ously, use of a large k-value would indicate that only sites with
relatively high accident frequency are to be selected, while use
of a small k would result in a large number of sites being targeted
as hotspots. In practice, this value can be politically determined,
representing the demanded safety level before inspecting and
targeting a site. In some cases, it can be simply defined on
the basis of the observed average and standard deviation of the
number of accidents over the whole population under analysis,
that is:

k =Y+ sz0, 2

where, y is the observed accident mean using data and s the
standard deviation of the observed accident history, and zg is
a constant representing the number of standard deviations to
consider. For a more discussion on the definition of k, we
refer to Higle and Witkowski (1988), Schluter et al. (1997) and
Heydecker and Wu (2001).

In order to carry on a hypothesis test in a Bayesian framework,
a test statistic v; can be derived from the posterior distribution
of 6;, such that:

v = p(Hyily:) = p6; > klyi). 3

Once the test statistic is computed, we reject the null hypoth-
esis Hy; for site i, if v; > ¢, where ¢ is a cutoff or threshold value.
Obviously, the number of sites that are detected as hotspots
largely depends on the critical threshold . The following section
discusses the challenge underlying the problem of determining
the optimal threshold and introduces alternative approaches to
address this problem.

3.1. The multiple testing issue

In general, when a hypothesis is tested, two types of errors
can occur: (1) type I error, when a safe location is selected as
hotspot (false positive) and (2) type II error, when a hotspot is
identified as safe site (false negative). In a classical setting, if
we test a single hypothesis (n=1), the optimal threshold value
is often chosen so that the probability of making a type II error
is minimized while the probability of making an type I error
is controlled at a reasonable level «. However, when we test
multiple hypotheses using a common threshold t, the possible
outcomes (over the n tests) may be summarized in Table 1. From
these outcomes only the total number of rejected null hypothe-
ses, D(t), can be observed. The variable V(¢) is referred to as the
number of Type I errors, whereas the variable 7(f) represents
the number of Type II errors (Dudoit et al., 2004). In this case,
instead of choosing the threshold value t in an optimal way for
each test, we aim to determine the optimal cutoff value for all
of the n tests.

To address this issue, Benjamini and Hochberg (1995) pro-
posed the concept of false discovery rate (FDR) for determining
optimal thresholds in a multiple testing setting. FDR is defined
as the expected proportion of Type I errors among the rejected
null hypotheses, and more formally,

V()

D(t)
ii. FDR(t) = E[V(1)], if D(t) = 0.

i. FDR() =E { } ,ifD() >0

“

Similarly, the false negative rate (FNR) is defined as the
expected proportion of Type II errors among the null hypothe-
ses that have been accepted. We refer to Dudoit et al. (2004) for
more information on the error rates and the multiple testing pro-
cedures in a frequentist setting (based on p-values). For details
on Bayesian multiple testing, we refer to Muller et al. (2004),
Do et al. (2005), and Scott and Berger (2006), for instance.

3.2. Bayesian hypothesis testing procedures

In this section, we present two testing procedures, each of
them providing a control of a specific global error over the n
tests performed.

Table 1
Outcomes of multiple tests when using a t-dependent rejection region

Test result

#of Hp accepted  # of Hy rejected

Real state of the sites

# of truly non-hotspots (Hp) U(t) V(1) no
# of truly hotspots (H}) () NG ny
n—D(t) D(1) n

Notation: n=total number of sites under analysis; no=unknown number of
truly non-hotspots; n; =unknown number of truly hotspots; V() =number of
false positives; 7(f) =number of false negatives; S(f) =number of unsafe sites
correctly classified as hotspots; U(f) =number of safe sites correctly defined
as non-hotspots; D(f)=number of rejected null hypotheses (number of sites
detected).
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3.2.1. Bayesian test with weights (BTW)

Here, the decision of accepting or rejecting the null hypoth-
esis is based on a specific loss function which specifies the
possible economic consequences (cost) of making a decision
error. The loss function is commonly defined as (Berger, 1985):

goals of minimizing false discoveries and false negatives. Here,
we consider the bivariate loss function that explicitly acknowl-
edges the two competing goals, which is defined as,

Lr = [FDR(t), FNR(?)], (®)

0, ifthedecision takenisright, thatis, accept Hy; when 6; < k orreject Hy; when 6; > k

co, ifwereject Hy; when6; < k (false positive),

c1, ifweaccept Hy; when6; > k (false negative)

where cg and ¢ represent the losses for making a wrong decision
due to a false positive and a false negative error, respectively. It
can be shown that the optimal rejection region that minimizes
this loss function can be defined on the basis of the posterior
probability of the alternative hypothesis for site i, that is,

co
c1 + C()7

Reject Hy; if v; = p(Hy;lyi) > (6)
where vj; is the test statistic for site i defined in Eq. (3). Based
on this decision rule, the critical threshold t is given by #} =
co/[c1 + col, where ¢ stands for this Bayesian test with weights
(BTW). Note also that cg and c; might be relatively fixed with
respect to each other. For instance, if we specify co=2and ¢y =1,
we obtain £} =0.66. This means that an incorrect decision of
selecting a safe site as hotspot has twice the weight or cost of
accepting a site as non-hazardous when it is in fact dangerous.

3.2.2. Bayesian test controlling for the posterior FDR or
FNR

Alternatively, we can apply multiple testing procedures that
provide a direct control of the false discovery and false negative
rates defined in Eq. (4). These procedures have the advantage to
control the proportion of non-hotspots included in a list (FDR) or
to control the proportion of real hotspots that are excluded from
a list (FNR). Thus, using the FDR procedure, practitioners may
select a list of sites that is expected to contain a pre-specified
percentage of non-hotspots, for instance 5% or 10%. Control-
ling the FNR, practitioners may also select a list such that only
5% of the real hotspots are missed. In a Bayesian setting, these
error rates are actually defined as the posterior expected false
discovery rate denoted by FDR(¢) and the posterior expected
false negative rate denoted by FNR(z). Based on the work of
Muller et al. (2004), these posterior expected rates are defined
as,

’

i. FDR()=E { 140 ] 2 di(1 =)

b +¢"] T DW+¢ -
JU— { T(@) } 21 —dv;
ii. FNRO)=E | — 2 |y| = &= —_ 271

n— D) +& n—D(@)+§

where, d; is referred to as a discovery or negative count, i.e.,
di=1 if Hy; is rejected and d; =0 otherwise. Then, D(¢) = Xd;
is the number of rejected null hypothesis or the number of
sites declared as hotspots. Furthermore, V() = £d;(1 — v;) and
T(H)=2(1 — d;)v; denote the posterior expected count of false
discoveries and false negatives, respectively. Finally, the addi-
tional term & avoids division by zero and y is the observed data.
Muller et al. (2004) proposed several ways of combining the

&)

where Lr denotes the posterior expected loss function. Under
this loss function, the optimal list of sites can be defined as
the minimization of FNR(#) subject to FDR(¢) < ap, where
ap denotes the FDR-control level (e.g., 1%, 5%, ...) which is
specified by practitioners. Similarly, we can minimize FDR(?)
subject to FNR(f) < an, where ay represents the level at
which the FNR(¢) wants to be controlled. In the first case,
when controlling FDR(¢) < ap, the optimal decision takes the
form:

Reject Hy; if v; > 175, 9

where, the optimal cutoff #§ is given by,
tfy = min{z € [0, 1], FDR(?) < ap}. (10)

More details and proofs of these testing procedures can be
seen in Muller et al. (2004). For implementation of this multiple
testing procedure, we can apply the following steps:

(1) Once Hy; has been fixed for each site i, we compute:

v; = p(Hyilyi), (11

according to the probability model assumed.

(2) When controlling for the FDR, we compute #y according
to Eq. (10), where FDR(?) is given by Eq. (7-i). In prac-
tice, 1, can be determined by computing FDR(7) for a finite
number of values of ¢, chosen in [0,1], for instance, = 0.99,
0.98, ... Then, # will correspond to the minimum ¢ such
that FDR(#) < ap. These two steps are very easy to imple-
ment and more details are provided in Miranda-Moreno
(2006).

When the aim is to control the proportion of hotspots excluded
from a list, decision makers may control the FNR(¢) and min-
imize the FDR(¢). For that, the multiple testing procedure
described above can be repeated in a similar fashion, with the
difference that now the optimal cutoff £ is computed as,

1 = min{r € [0, 1], FNR(?) < an}, (12)

where ayn denotes the level at which the FNR(?) is to be con-
trolled.

4. Hypotheses tests based on posterior distribution of
ranks

In our previous discussion, we have shown that Bayesian
hypotheses tests may be formulated on the basis of the posterior
distribution of 6;. The decision as to whether or not a site should
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be considered as a hotspot could also be made on the basis of
its relative rank as compared to other sites. The rank of a site
i (R;) under the safety measure 6; is defined as follows (Rao,
2003),

Ri= 1(6: = 6, (13)

J=1

where I(-) is an indicator function and the smallest 6; has rank
1. In other words, the greatest ranks correspond to the most
hazardous sites. We define R=(Ry, Ry, ..., R;) as the rank
vector for a sample of n sites. Similar to the process of identifying
hotspots based on 6; described above, hotspots can be identified
on the basis of the ranks of the sites by testing the following
hypotheses,

Hyi: R; < g (site i is referred to as non-hotspot),
Hii: R;>q (site i is referred as hotspot),

where ¢ is a standard or upper limit rank specified by the
decision-makers. For instance, we can define ¢ as a certain pro-
portion of n, that is, g=y x n, where y is a percentage, e.g.,
70%, 80%, etc. This hypothesis test can be used when the inter-
est focuses on the identification of sites with ranks greater than a
certain percentile value. Once Hy; is established, the test statistic
v; =p(Hy;ly;) is computed under the posterior distribution of R;,
that is, v; = p(R; > gly;). The optimal cutoff 7" is then determined
according to any of the multiple testing procedures defined in
the previous section.

In the present context, one of the advantages of the multiple
testing methods discussed above is that they can be used under
any modeling settings currently available in the road safety liter-
ature. For instance, one can utilize an Empirical Bayes approach
implemented via the negative binomial model or a full Bayesian
approach applied via hierarchical Bayes models defined in the
following section.

5. Hierarchical Bayes models for accident data

Hierarchical Bayes models have been extensively applied for
modeling traffic accident data. These models can deal with prob-
lems of over-dispersion due to unobserved heterogeneities, and
allow the user to incorporate site-specific attributes and com-
plex variations, e.g., time and/or space patterns in the data.
In the present context, one major advantage is the flexibility
in terms of distributions that are offered, and the possibil-
ity to obtain posterior densities of the parameters of interest.
The most popular model in road safety is the Negative Bino-
mial or Poisson/Gamma model. This model is widely used
in part due to its computational advantages. However, less
attention has been devoted to alternative models such as the
Poisson/Lognormal model which may be more suitable for mod-
eling accident rates with a heavier-tailed distribution than the
Gamma (Winkelmann, 2003; Miranda-Moreno et al., 2005).
These two models are defined next in a hierarchical Bayes frame-
work.

5.1. Model framework

The set of independent observations for the n locations is rep-
resented by the vector y=(y1, y2, ..., y,) with corresponding
accident mean 0= (01, 0, ..., 8,). Here, we start by assuming
that for each site i, the number of accidents over a period of time
(Y;) follows an independent Poisson distribution with its mean
(0;) defined by a regression model as follows (Winkelmann,
2003):

0; = exp(X;B + &;). (14)

where x; = (1, xi1, . . ., x;x)’ is a vector of covariates representing
site-specific attributes, B =(Bo, .. ., Br) is a vector of unknown
regression parameters, and ¢; represents the model error for site
i. This expression (14) can be written as,

@ 6=,

where p; =exp(x;p) and ¥; = exp(e;). Commonly, ¥; is viewed
as an unmeasured heterogeneity due to omitted exogenous
covariates and randomness. The hierarchical structure of the
model is the following:

() Yil6iSPoisson(6;),
(i)  Diln ~ me(n)andn ~ m,(.) 5
(i) f(B) o<1

This means that a prior distribution 7y is assumed on the
error parameter v, which depends on another parameter n, with
prior m;. In addition, () denotes the prior on the regression
parameters [3, which is commonly assumed to be flat (normal)
or diffuse. A flat prior indicates that a mean equal to O and a
very large variance is assumed on each of the regression param-
eters, e.g. B~ N(0,1000). Furthermore, the parameters 3 and
n, are mutually independent. According to the specification of
the priors mwy and 7, two alternative models are defined as
follows.

5.2. Hierarchical Poisson/Gamma model

Based on the model framework defined in (15), the hierar-
chical Bayes (HB) version of the Poisson/Gamma model can be
written as (Carlin and Louis, 2000; Rao, 2003),

1  Yil¢, 6 ~ Gamma(e, )

(i) ¢ ~ Exponential(c) (16)
(iii) 8 ~ Gammal(a, b)

where ¢ and § are the shape and scale parameters of the Gamma
distribution. The hyper-parameters a, b and ¢ have fixed values.
By specifying ¢ =4, the hierarchical Negative Binomial (HNB)
model is derived with the following assumptions,

Uil¢ ~ Gamma(¢, ¢)

. (17)
¢ ~ Exponential(c)

Notice that for a given value of ¢, ¥; follows a Gamma
distribution with E[¢;] =1 and Var[¢;] = 1/¢.
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5.3. Hierarchical Poisson/Lognormal model

Instead of assuming a Gamma prior for ¥%;, one can assume
an alternative probability density function such as the Lognor-
mal. With this assumption, the hierarchical Poisson/Lognormal
(HPL) model is written as follows (Rao, 2003):

(i) & = log(¥;)|o* ~ Normal(0, 02), and

(i) o~2 ~ Gamma(a, b). (18)

As in the previous models, the hyper-prior parameters a and
b have fixed values and are specified by modelers.

These hierarchical Bayes models are argued to be more flex-
ible than the traditional two-stage Poisson models since more
stages of randomness can be considered (Carlin and Louis, 2000;
Rao, 2003). These models have been also extended to allow
spatial variations for modeling geographical dependence such
as the conditional auto-regressive or CAR models, and to the
multivariate case (Miaou and Song, 2005).

5.4. Bayesian inference and model selection

When working with hierarchical Bayesian models, posterior
distributions are not tractable algebraically in many cases, as is
the case for the models considered here. This problem can be
solved by generating a large number of samples from the pos-
terior distribution using Markov Chain Monte-Carlo (MCMC)
algorithms. From these samples, posterior quantities of inter-
est are computed for the model parameters (Carlin and Louis,
2000). In this paper, MCMC algorithms implemented in Win-
BUGS, such as Gibbs and Metropolis-Hastings, are utilized for
this purpose. A test statistic v; for each site is also computed
using the MCMC samples in order to apply the multiple testing
procedures described previously.

To compare two alternative models (e.g., HNB versus HPL
model), the popular Deviance Information Criterion (DIC) pro-
posed by Spiegelhalter et al. (2002) is utilized. This criterion
is very popular for Bayesian model selection and is based on
the posterior distribution of the deviance statistic defined as
Dg =—21ogf(y|0). Formally, it may be written as,

DIC = D + pp = 2D — D), (19)

where pp = D — D(f) and D is the posterior mean of the
deviance statistic, i.e., D = E[—2 log f(y|0)]. In addition,
D() = —2 log f(y|#)], which means that the deviance is
obtained by substituting on Dy the posterior mean of @ denoted
by . The model with the smallest DIC is defined as the model
that would best fit the data.

6. A case study

We start this section by describing the decision process that
practitioners may follow in order to select a subgroup of candi-
date sites based on any of the Bayesian tests defined previously.
This decision process is summarized in Fig. 1, where the first
step is the model selection (for instance, HNB or HPL model),
which can be done based on the DIC defined previously. As a

Model selection

v | %

Poisson/Gamma Poisson/Lognormal

| |
V.

Hypothesis test definition

\’ | \/

Define k —> Hy: 6,<k Ho: Ri<q <= Defineq

Compute —> v,=p(6,> k) v;=p(R;>q) < Compute

l

Selection of the Bayesian test

2 \2 N’
Traditional FDR FNR
| I |
Specify —>  ¢jand ¢, Oy "N < Specify
v

List of sites for safety inspections

Fig. 1. Decision process for identifying hazardous locations.

second step, the hypothesis test is defined according to the choice
of posterior distribution, p(6;|y;) or p(R;|y;). As part of this step,
the critical limit values k and g must first be specified in order to
compute the test statistic v; for each site under analysis. Finally,
a Bayesian test is selected depending on the type of error rate
that is to be controlled. If the Bayesian test with weights (BTW)
is applied, the weights of ¢y and c; must be designated by prac-
titioners. If the FDR or FNR test is applied, the levels of control
ap or oy must be defined.

In this section, the application of the testing procedures dis-
cussed above is illustrated using empirical data. A sample of
highway-railway intersections in Canada is considered as an
application environment. This is extracted from two databases
provided by Transport Canada and the Transportation Safety
Board of Canada. One database consists of a grade crossing
inventory, including several crossing features such as types of
warning device, geometric characteristics and traffic conditions,
e.g., posted road speed, maximum train speed, average annual
daily traffic, average daily trains, etc. The second database pro-
vides information on car-train accidents for several years. These
databases have been used by the same authors in previous work
(Miranda-Moreno et al., 2005). Here, we consider a sample of
public crossings with gates as main warning devices, which
comprises approximately 1773 grade crossings, as well as the
history of accidents of the period 1997-2001 (5 years of accident
information). According to our previous work, we consider as a
measure of traffic exposure the natural logarithm of the product
of average daily trains and average annual daily traffic (AADT).

6.1. Model calibration and selection

For model calibration, the hyper-parameter ¢ of the HNB
model might be fixed in advance. In this study, we follow a
more reasonable approach by taking advantage of the dispersion
parameter estimate (¢) obtained by maximizing the NB marginal
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likelihood. That is, we first calibrate the NB model to the studied
dataset which yields a dispersion parameter of ¢ =0.64. Based
on the fact that the expectation of the Exponential hyper-prior
for ¢ is 1/c, we can then assume that E(¢|c) = 1/c=0.64, from
which ¢ =1.56. For the HPL model, a vague or non-informative
hyper-prior is assumed for o~2 with both parameters a and b,
equal to 0.001. This suggests a mean equal to 1 and a very large
variance. We refer to Washington and Oh (2006) for more discus-
sions on how to incorporate prior knowledge under a Bayesian
framework.

Once the hyper-parameters are fixed, posterior distributions
of model parameters are sampled using WinBUGS 1.4. In this
study, 6000 simulation iterations were carried out for each
parameter of interest, using the first 1000 samples as burn-in
iterations. In order to select the crossing attributes to be included
in the final model, we first obtained the posterior expected values
of all the regression coefficients, along with their standard devia-
tions and 95% confidence intervals. From those, we only selected
the attributes whose regression coefficients did not contain 0 in
the 95% confidence intervals, i.e., regression parameters signif-
icantly different from zero at the 95% confidence level. These
crossing attributes are: (1) road type represented as a binary vari-
able (road type =1 for arterials or collectors, and O otherwise),
(2) posted road speed, and (3) traffic exposure computed as a
function of daily traffic (AADT) and daily trains.

The posterior summary of the regression coefficients 3 along
with the dispersion parameters ¢ and o> were computed for both
the HNB and HPL models. The results are presented in Table 2.
The posterior mean of each regression coefficient, expect B, is
positive, making sense from a safety point of view and confirm-
ing the results obtained in our previous works (Miranda-Moreno
et al., 2005). In addition, from the DIC results presented in the
same table, we can see that a better fit to the data was obtained
when applying the HNB model. The DIC value computed with
the HNB model is smaller than the one obtained with the HPL
model.

6.2. Some results

The implementation of multiple testing methods involves dif-
ferent decision parameters which can have a significant impact

Table 2
Summary of model calibration results

Model Posterior S.E. 95% Conf. interval

mean

Parameters

HNB Intercept (Bo) —6.429 0.717
Road type (81) 0.499 0.164
Posted road speed (82) 0.011 0.005
Traffic exposure (83) 0.323 0.054
¢ 0.691 0.237
Goodness of fit measure: DIC=1191.25

(=7.764, —4.955)
(0.171, 0.815)
(0.001, 0.021)
(0.214, 0.429)
(0.381, 1.332)

HPL Intercept (Bo) —7.041 0.718
Road type (81) 0.506 0.172
Posted road speed (85) 0.011 0.005
Traffic exposure (f3) 0.327 0.049
o? 1.034 0.338
Goodness of fit measure: DIC = 1250.40

(—8.316, —5.657)
(0.167, 0.842)
(0.001, 0.022)
(0.228, 0.421)
(0.596, 2.012)

on the size as well as composition of the final hotspot list. In
this section, we present some results of a sensitivity study to
illustrate the effects of these parameters, including:

. type of error rates: BTW, FDR or FNR,
. posterior distributions: 8; versus R;,

. model choice: HNB versus HPL model,
. control levels: ap and an.

a0 o

For this analysis, the following values were assumed for k
and ¢:

e k=0.18 for Hy;: 6; < k. This k-value is fixed according to Eq.
(2), where the observed average number of accidents (y) in the
dataset studied is approximately 0.12, the standard deviation
(s) is 0.4 and we consider that zp=1.5 standard deviations.
This standard value is fixed using the empirical information
about accident frequency, independent of the model assump-
tions.

e g=1418 for Hy;: R; <gq. This g-value corresponds to a
y = 80th percentile of the ranks where n = 1773 locations, that
is, ¢=0.8 x 1773.

6.2.1. Effect of different error rates

To illustrate the effect of the use of alternative error rates, we
consider the following control levels and weights under the two
hypotheses defined before and the HNB model:

e A control level ap = 10%, when using the false discovery rate
procedure, that is, the list selected is expected to contain at
most 10% of non-hazardous sites,

e A control level an =10%, when applying false negative rate
method, that is, at most 10% of non-hotspots are expected to
be hazardous,

e Two sets of weights when using the Bayesian test with weights
(BTW): co=2 and c; =1 (i.e., a false discovery is twice as
costly as a false negative) and cp =1, ¢ =2 (i.e., a false neg-
ative is twice as costly as a false positive).

These results are given in Table 3. As expected, the hotspot
list obtained when limiting the FDR is less than the list identified
by controlling the FNR. While aiming at controlling FDR has
the advantage of having a smaller list of hotspots, it suffers from
a higher FNR. Conversely, the approach of controlling FNR
ensures that the true dangerous sites are not missed, but it does

Table 3
Number of hotspots identified with different Bayesian tests (Using the HNB
model)

Testing method For Hy;: 6>0.18 For Hy;: R; > 1418
Threshold Number of Threshold Number of
intersections intersections
FDR(¢) < 10% 1y = 0.80 36 1y = 0.80 37
BTW, co=2,co=1 1 =0.67 93 t¥ = 0.67 95
BTW,co=1,c1=2 =033 282 13 =033 283
FNR(?) < 10% ;=027 464 ;=027 474
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Fig. 2. Comparison of v;-values under Hy;: 6>0.18: HNB vs. HLN model.

so at the cost of defining safe sites as hotspots. Furthermore, it
can be noted that for a reasonable range of values of cg and ¢y,
the results from the BTW were bounded by the ones obtained
with the FDR and FNR procedures. This suggests that the BTW
can be used as an alternative to achieve a balance between FDR
and FNR.

6.2.2. Posterior distribution effect, 0; versus R;

A fair comparison of the performance of the posterior of
ranks versus the posterior distribution of 6; may not be easy,
as we are dealing with two totally different types of hypothe-
ses. For instance, in testing Ho;: 0; <k and Hop;: R; <g, the
resulting list largely depends on the upper limit values k and
g, chosen for both hypotheses. However, it may happen in some
situations that the two tests produce very similar lists. An exam-
ple of that can be seen in Table 3, with k=0.18 and ¢g=1418,
where the choice was made to yield lists of the same number of
sites.

6.2.3. Impact of the model type

The effect of model choice is illustrated in Fig. 2, where
the v;-values of the two alternative models are compared under
the same hypothesis, Hj;: 6; <0.18. In this figure, we can
observe relevant differences in the v;-values coming from two
alternative models, specifically for v;-values between 0.2 and
0.6. In this range, the HPL tends to produce larger v;-values
than the HPL. This happens to be for crossings with very
large traffic exposure but no accident history. In this partic-
ular case, the output seems to be relatively sensitive to the
hyper-prior assumptions on the dispersion parameter (Miranda-
Moreno, 2006). Obviously, the model choice may have a
significant effect on the hotspot list size. For instance, under
the same hypothesis test we see in Fig. 3a that the lists iden-
tified with the FDR test and HNB model can be up to 30%
larger than those detected with the HPL model. An impor-
tant impact can also be observed when applying the FNR test
(Fig. 3b).
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Fig. 3. Influence of the control levels (ap and an) on the hotspot list size.

6.2.4. Effects of ap and oy

The results shown in Fig. 3a and b also indicate that the crit-
ical level of controls ap and an have a significant impact on the
size of the hotspot list. Obviously, the number of hotspots iden-
tified under either error rate is a function of the control levels.
Very small values of ap produce very small hotspot lists. Con-
versely, very small values of an produce very large hotspot lists.
This result is expected, signifying the importance of selecting
an appropriate critical error rate before a hotspot identification
process is initiated.

In summary, practitioners should be informed that the number
of sites that are considered to be hotspots depends on many
factors, including:

e The minimum acceptable level of risk that is used in the
hypothesis tests (i.e., k or g). For example, Ho;: 6; <0.12
would gives larger lists than Hy;: 6; <0.18.

e The type of error rates used in controlling the overall deci-
sion error (i.e., FDR or FNR). FNR gives larger list than
FDR.

e Level of control on the error rates. For example, controlling
FDR(t) < 5% gives a smaller list than controlling FDR(?) <
10%, and FNR(?) < 10% gives a smaller list than FNR(z) <
5%.




1200 L.F. Miranda-Moreno et al. / Accident Analysis and Prevention 39 (2007) 1192-1201

7. Conclusions

Two Bayesian testing procedures have been introduced for
hotspot identification. These procedures can be used not only
for ranking a group of locations but also for selecting a list
of sites for further engineering safety inspections with a target
error rate. They afford practitioners the opportunity to account
for uncertainty in model parameters and safety measures while
minimizing the false discovery rate (FDR) or false negative rate
(FNR) in the selection process.

In particular, the FDR and FNR based procedures are con-
venient when we want to control the expected rates of false
positives or false negatives among the subgroup of locations
designated as hotspots. These methods are argued to be more
powerful than competing ones, having a natural interpretation
and being straightforward in their application. When using the
Bayesian test with weights, practitioners need to designate the
weights of ¢g and c;. Under a safety improvement program with
large budget constrains, co should be assigned a larger value than
c1. Moreover, when we want to minimize simultaneously both
error rates, comparable values should be given to ¢y and c;. In
addition, from a social perspective, we should ideally concen-
trate on the control of FNR in order to minimize the number of
hotspots excluded from a list for further safety inspections. Fur-
thermore, the FDR criterion is economically interpretable since
the posterior expected FDR gives the expected proportion of the
investment that could be wasted on false leads.

In this paper, we have also shown how both the posterior
distribution of accident frequency and posterior distribution of
ranks can be used to carry on hypothesis tests. Mainly, the choice
of one approach over the other should be motivated by the practi-
tioner’s interest. If the interest is the relative ranking of locations,
inference based on the posterior distribution of ranks is more effi-
cient than posterior distribution of the mean number of accidents.
However, when the group of locations under consideration (n) is
relatively large, the computation of the posterior distribution of
ranks can be more challenging. A simulation study designed to
compare these alternative ranking methods is the subject of our
current research. Note that when using empirical accident data,
we do not have the ground truth information (a priori) about
which sites are truly dangerous. In contrast, when working with
simulated data we have the advantage of starting with the true
safety state of each site and hence, can establish the ones that are
truly hotspots. By comparing the expected versus observed (true)
error rates we can then assess the method’s power to detect the
true hotspots (Miranda-Moreno, 2006). This approach of using
simulated data to validate a new methodology or model has been
widely used in the field of statistics.

This research has adopted a hierarchical Poisson framework
that has widely been recommended for modeling accident data
with substantial sources of variations due to unobserved hetero-
geneity and space-time trends. Our case study indicated that the
model choice may have an important impact on the results of the
hotspot selection process. This can be due to the low accident
frequency of the studied dataset and the hyper-prior assumptions
on the dispersion parameter (the use of diffuse priors). Given that
the model choice may be relevant in such cases, we recommend

that several models should be applied to the same dataset, and
a goodness-of-fit analysis performed in order to select the best
model. The performance of alternative hyper-prior assumptions,
models and safety measures is also part of our current research.
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