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bstract

Ranking a group of candidate sites and selecting from it the high-risk locations or hotspots for detailed engineering study and countermeasure
valuation is the first step in a transport safety improvement program. Past studies have however mainly focused on the task of applying appropriate
ethods for ranking locations, with few focusing on the issue of how to define selection methods or threshold rules for hotspot identification. The

rimary goal of this paper is to introduce a multiple testing-based approach to the problem of selecting hotspots. Following the recent developments
n the literature, two testing procedures are studied under a Bayesian framework: Bayesian test with weights (BTW) and a Bayesian test controlling
or the posterior false discovery rate (FDR) or false negative rate (FNR). The hypotheses tests are implemented on the basis of two random effect

r Bayesian models, namely, the hierarchical Poisson/Gamma or Negative Binomial model and the hierarchical Poisson/Lognormal model. A
ataset of highway–railway grade crossings is used as an application example to illustrate the proposed procedures incorporating both the posterior
istribution of accident frequency and the posterior distribution of ranks. Results on the effects of various decision parameters used in hotspot
dentification procedures are discussed.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

Hotspot identification is usually the first step in a safety
mprovement program, in which sites are first sorted accord-
ng to one or more ranking criteria, and a subset of sites are
hen selected as high accident risk locations or hotspots. These
ocations are considered as the most suitable candidates for fur-
her safety inspections and implementation of remedial actions.

ost of the past efforts in the literature have been devoted to the

roblem of determining the appropriate safety measures (e.g.,
auer, 1997; Miaou and Song, 2005; Persaud and Hauer, 1984;
ersaud, 1991; Persaud et al., 1999; Hauer, 1997; Cheng and
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ashington, 2005). These efforts have lead to the general con-
ensus that the safety status or accident risk at a given location
hould be estimated using random effect or Bayesian models
Schluter et al., 1997; Heydecker and Wu, 2001; Tunaru, 2002;

iranda-Moreno et al., 2005; Miaou and Song, 2005).
In contrast, the issue of what decision rules should be used in

electing hotspots is still widely open. Traditionally two strate-
ies are commonly followed as hotspot selection rules (Schluter
t al., 1997; Hauer et al., 2004): (1) selecting sites on the basis
f the budget available to conduct safety inspections and imple-
ent countermeasures and (2) selecting a list of sites based on

ome specified cutoff value or threshold of accident risk. The for-
er is probably the most common in practice, where hotspots

re selected sequentially from the ranked list until all budgeted
esources are exhausted. The latter ensures the selection of a list
f locations that are deemed dangerous at some critical level,
eaving variable the number of locations to be selected (Higle

nd Witkowski, 1988; Schluter et al., 1997; Heydecker and Wu,
001). This second strategy is often the result of local safety
olicies that stipulate tolerance levels of accident risks. It is the
ost appropriate when one wants to identify a list of hazardous
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ites exceeding a certain threshold value, e.g., all sites having at
east a 80% of chance to exceed a certain accident rate or number
f accidents.

One of the main limitations of the budget-based strategy is
hat it may result in an unnecessarily large list of sites includ-
ng a number of locations that are in fact not dangerous, or on
he contrary, may produce a short list ignoring locations which
re truly at high risk. On the other hand, the shortcoming with
he threshold-based strategy is the issue of how to define for-

ally the thresholds so that the resulting decisions are sensible
ith a minimum chance for errors. Notice that for both strate-
ies an erroneous selection of relatively safe sites as hotspots
false positives) can lead to a significant waste of already lim-
ted financial resources. Other the other hand, failing to detect
rue hotspots (false negatives) may result in inefficient reduc-
ion of accidents (Higle and Hecht, 1989; Schluter et al., 1997;
heng and Washington, 2005). The objective of this paper is

o introduce a new strategy called Bayesian testing approach
hat can be used to formally define decision rules for hotspot
dentification. This method offers a rigorous way of making
ecisions based on a hypothesis testing framework, so that the
umber or rate of wrong decisions in the hotspot selection pro-
ess can be explicitly minimized or controlled. This multiple
esting-based methodology has not been used in transport safety
iterature, but has been widely applied in areas such as genomics
nd astronomy (e.g., Benjamini and Hochberg, 1995; Genovese
nd Wasserman, 2002; Muller et al., 2004; Do et al., 2005; Scott
nd Berger, 2006).

A literature review on hotspot identification is offered in Sec-
ion 2. The theoretical definition of the Bayesian multiple testing
s presented in Section 3. In Section 4 we define how hypothe-
es tests can be implemented under the posterior distribution
f ranks. The hierarchical modeling framework considered here
s introduced in Section 5. A numerical example showing vari-
us aspects of model assessment and application of the multiple
esting procedures is discussed in Section 6. Finally, Section 7
ecapitulates the main conclusions and provides directions for
uture research.

. Literature review

A hotspot identification methodology includes essentially
wo elements: safety measures or criteria for ranking sites of
nterest and decision rules for selecting hotspots. Past research
as mostly focused on developing appropriate measures that
an be used to quantify the safety status or risk at individual
ocations of interest. The simplest risk measure is raw accident
ates, such as the number or cost of accidents per vehicle-miles
raveled or per vehicle entry. Unfortunately, raw risk estima-
ors have several limitations as discussed in a number of studies
e.g., Hauer, 1997; Miaou and Song, 2005). Specifically, a rank-
ng method relying on raw accident rates may produce large
umbers of misclassifications (e.g. selecting relatively safe loca-

ions as hotspots or vise versa) due to the random variation of
raffic accidents from year to year (Persaud and Hauer, 1984;
ersaud, 1986, 1991; Hauer, 1997; Cheng and Washington,
005).
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As an alternative, model-based approaches that apply ran-
om effect or Bayesian models become more and more popular
n safety literature and are widely recommended for the hotspot
dentification task (Schluter et al., 1997; Heydecker and Wu,
001; Tunaru, 2002; Miranda-Moreno et al., 2005; Miaou and
ong, 2005). Following this approach, many alternative rank-

ng criteria and random effect or Bayesian models have been
roposed for hotspot identification. Among the most popular
anking criteria are the posterior mean or rate of accident fre-
uency (Hauer and Persaud, 1984; Higle and Witkowski, 1988;
ersaud, 1991; Miranda-Moreno et al., 2005), potential of acci-
ent reduction (Persaud et al., 1999; Heydecker and Wu, 2001),
osterior probability of being the most dangerous site (Schluter
t al., 1997; Tunaru, 2002) and posterior expectation of ranks
Tunaru, 2002; Miaou and Song, 2005). Among the alternative
odels, we can mention the popular negative binomial, gener-

lized negative binomial, Poisson/Lognormal and hierarchical
ayesian models (Miranda-Moreno et al., 2005). These models
ave also been extended to account for spatial and/or temporal
atterns as well as accident severity (Tunaru, 2002; Miaou and
ong, 2005).

A number of studies have also been devoted to the issue
f relative performance of Empirical Bayesian methods and
ther techniques such as the statistical quality control or confi-
ence intervals (e.g., Norden et al., 1956; Laughlin et al., 1975;
auer and Persaud, 1984; Persaud and Hauer, 1984; Higle and
echt, 1989; Cheng and Washington, 2005). Some researchers
ave also proposed to incorporate accident severity or crash
osts into risk measures (e.g., Hauer et al., 2004; Geurts et
l., 2004; Miranda-Moreno, 2006). Others have classified traffic
ccidents by specific characteristics such as roadway environ-
ent, weather conditions or accident types, such as turning,

ide-swipe, and rear-end (Flak and Barbaresso, 1982; Sayed et
l., 1995). Furthermore, a few researchers have explored the
ssue of how many years of accident data should be employed
n the analysis (May, 1964; Cheng and Washington, 2005).

Research on hotspot selection rules is however noticeably
carce. As mentioned before, an inappropriate selection method
ay lead to a significant number of misclassifications (false

ositives or false negatives). This issue has been previously dis-
ussed by Higle and Hecht (1989) and Cheng and Washington
2005). Despite its importance some simple selection rules have
ommonly been adopted (Higle and Witkowski, 1988; Schluter
t al., 1997). In this research, we attempt to address this method-
logical gap by introducing a selection approach that minimizes
nd/or control the number or proportion of misclassifications
xplicitly.

. Decision rules based on Bayesian multiple testing

Considering n random variables (Y1, . . ., Yn) corresponding
o n sites under study, where Yi represents the number of acci-
ents over a given time period at site i (i = 1, . . ., n). We assume

hat Yi is distributed according to a probability law with density
(yi|θi), where θi represents the mean number of accidents at
ite i (parameter of interest). In Bayesian analysis, assuming a
istribution with density π(.) on θi allows the incorporation of
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In this section, we present two testing procedures, each of
them providing a control of a specific global error over the n
tests performed.

Table 1
Outcomes of multiple tests when using a t-dependent rejection region

Test result

# of H0 accepted # of H0 rejected

Real state of the sites
# of truly non-hotspots (H0) U(t) V(t) n0

# of truly hotspots (H1) T(t) S(t) n1

n − D(t) D(t) n

Notation: n = total number of sites under analysis; n0 = unknown number of
194 L.F. Miranda-Moreno et al. / Accident A

prior knowledge on the behavior of θi. This prior information
s combined with the information brought by the sample into
he posterior distribution, represented by p(θi|yi), where yi rep-
esents the observed value of Yi. The posterior distribution of θi

s a direct application of Bayes’ theorem, and has the following
orm (Carlin and Louis, 2000),

(θi|yi) = f (yi|θi)π(θi)

m(yi)
= f (yi|θi)π(θi)∫

f (yi|θi)π(θi)dθi

, (1)

here m(yi) represents the unconditional marginal density func-
ion of yi and f(yi|θ) is the observed data likelihood. A detailed
iscussion on the prior distributions assumed for modeling acci-
ent data is provided in Section 5.

A set of hypotheses tests can be defined for each site i to
etermine whether or not to reject the null hypothesis that a
iven site is not hotspot, that is,

H0i: θi ≤ k (site i is referred as non-hotspot),
H1i: θi > k (site i is referred as hotspot),

here k is a standard value or upper limit of the “acceptable”
ccident frequency, specified by practitioners according to the
pplication conditions. This critical value may be established
n different ways and should reflect particular safety policies,
ecision-maker’s experience, historical information, etc. Obvi-
usly, use of a large k-value would indicate that only sites with
elatively high accident frequency are to be selected, while use
f a small k would result in a large number of sites being targeted
s hotspots. In practice, this value can be politically determined,
epresenting the demanded safety level before inspecting and
argeting a site. In some cases, it can be simply defined on
he basis of the observed average and standard deviation of the
umber of accidents over the whole population under analysis,
hat is:

= ȳ + sz0, (2)

here, ȳ is the observed accident mean using data and s the
tandard deviation of the observed accident history, and z0 is
constant representing the number of standard deviations to

onsider. For a more discussion on the definition of k, we
efer to Higle and Witkowski (1988), Schluter et al. (1997) and
eydecker and Wu (2001).
In order to carry on a hypothesis test in a Bayesian framework,

test statistic υi can be derived from the posterior distribution
f θi, such that:

i = p(H1i|yi) = p(θi > k|yi). (3)

Once the test statistic is computed, we reject the null hypoth-
sis H0i for site i, if υi ≥ t, where t is a cutoff or threshold value.
bviously, the number of sites that are detected as hotspots
argely depends on the critical threshold t. The following section
iscusses the challenge underlying the problem of determining
he optimal threshold and introduces alternative approaches to
ddress this problem.
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.1. The multiple testing issue

In general, when a hypothesis is tested, two types of errors
an occur: (1) type I error, when a safe location is selected as
otspot (false positive) and (2) type II error, when a hotspot is
dentified as safe site (false negative). In a classical setting, if
e test a single hypothesis (n = 1), the optimal threshold value

s often chosen so that the probability of making a type II error
s minimized while the probability of making an type I error
s controlled at a reasonable level α. However, when we test
ultiple hypotheses using a common threshold t, the possible

utcomes (over the n tests) may be summarized in Table 1. From
hese outcomes only the total number of rejected null hypothe-
es, D(t), can be observed. The variable V(t) is referred to as the
umber of Type I errors, whereas the variable T(t) represents
he number of Type II errors (Dudoit et al., 2004). In this case,
nstead of choosing the threshold value t in an optimal way for
ach test, we aim to determine the optimal cutoff value for all
f the n tests.

To address this issue, Benjamini and Hochberg (1995) pro-
osed the concept of false discovery rate (FDR) for determining
ptimal thresholds in a multiple testing setting. FDR is defined
s the expected proportion of Type I errors among the rejected
ull hypotheses, and more formally,

i. FDR(t) = E

[
V (t)

D(t)

]
, if D(t) > 0

ii. FDR(t) = E[V (t)], if D(t) = 0.

(4)

Similarly, the false negative rate (FNR) is defined as the
xpected proportion of Type II errors among the null hypothe-
es that have been accepted. We refer to Dudoit et al. (2004) for
ore information on the error rates and the multiple testing pro-

edures in a frequentist setting (based on p-values). For details
n Bayesian multiple testing, we refer to Muller et al. (2004),
o et al. (2005), and Scott and Berger (2006), for instance.

.2. Bayesian hypothesis testing procedures
ruly non-hotspots; n1 = unknown number of truly hotspots; V(t) = number of
alse positives; T(t) = number of false negatives; S(t) = number of unsafe sites
orrectly classified as hotspots; U(t) = number of safe sites correctly defined
s non-hotspots; D(t) = number of rejected null hypotheses (number of sites
etected).
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.2.1. Bayesian test with weights (BTW)
Here, the decision of accepting or rejecting the null hypoth-

sis is based on a specific loss function which specifies the
ossible economic consequences (cost) of making a decision
rror. The loss function is commonly defined as (Berger, 1985):

0, if the decision taken is right, that is, accept H0i when θi ≤
c0, if we reject H0i when θi ≤ k (false positive),

c1, if we accept H0i when θi > k (false negative)

here c0 and c1 represent the losses for making a wrong decision
ue to a false positive and a false negative error, respectively. It
an be shown that the optimal rejection region that minimizes
his loss function can be defined on the basis of the posterior
robability of the alternative hypothesis for site i, that is,

eject H0i if υi = p(H1i|yi) ≥ c0

c1 + c0
, (6)

here υi is the test statistic for site i defined in Eq. (3). Based
n this decision rule, the critical threshold t is given by t∗c =
0/[c1 + c0], where c stands for this Bayesian test with weights
BTW). Note also that c0 and c1 might be relatively fixed with
espect to each other. For instance, if we specify c0 = 2 and c1 = 1,
e obtain t∗c = 0.66. This means that an incorrect decision of

electing a safe site as hotspot has twice the weight or cost of
ccepting a site as non-hazardous when it is in fact dangerous.

.2.2. Bayesian test controlling for the posterior FDR or
NR

Alternatively, we can apply multiple testing procedures that
rovide a direct control of the false discovery and false negative
ates defined in Eq. (4). These procedures have the advantage to
ontrol the proportion of non-hotspots included in a list (FDR) or
o control the proportion of real hotspots that are excluded from
list (FNR). Thus, using the FDR procedure, practitioners may

elect a list of sites that is expected to contain a pre-specified
ercentage of non-hotspots, for instance 5% or 10%. Control-
ing the FNR, practitioners may also select a list such that only
% of the real hotspots are missed. In a Bayesian setting, these
rror rates are actually defined as the posterior expected false
iscovery rate denoted by FDR(t) and the posterior expected
alse negative rate denoted by FNR(t). Based on the work of

uller et al. (2004), these posterior expected rates are defined
s,

i. FDR(t) = E

[
V (t)

D(t) + ξ

∣∣∣∣ y

]
=

∑
di(1 − υi)

D(t) + ξ
,

ii. FNR(t) = E

[
T (t)

n − D(t) + ξ

∣∣∣∣ y

]
=

∑
(1 − di)υi

n − D(t) + ξ
,

(7)

here, di is referred to as a discovery or negative count, i.e.,
i = 1 if H0i is rejected and di = 0 otherwise. Then, D(t) = �di

s the number of rejected null hypothesis or the number of
ites declared as hotspots. Furthermore, V(t) = �di(1 − υi) and

(t) = �(1 − di)υi denote the posterior expected count of false
iscoveries and false negatives, respectively. Finally, the addi-
ional term ξ avoids division by zero and y is the observed data.

uller et al. (2004) proposed several ways of combining the
h
d
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r reject H0i when θi > k

(5)

oals of minimizing false discoveries and false negatives. Here,
e consider the bivariate loss function that explicitly acknowl-

dges the two competing goals, which is defined as,

R = [FDR(t), FNR(t)], (8)

here LR denotes the posterior expected loss function. Under
his loss function, the optimal list of sites can be defined as
he minimization of FNR(t) subject to FDR(t) ≤ αD, where
D denotes the FDR-control level (e.g., 1%, 5%, . . .) which is
pecified by practitioners. Similarly, we can minimize FDR(t)
ubject to FNR(t) ≤ αN, where αN represents the level at
hich the FNR(t) wants to be controlled. In the first case,
hen controlling FDR(t) ≤ αD, the optimal decision takes the

orm:

eject H0i if υi ≥ t∗D, (9)

here, the optimal cutoff t∗D is given by,

∗
D = min{t ∈ [0, 1], FDR(t) ≤ αD}. (10)

More details and proofs of these testing procedures can be
een in Muller et al. (2004). For implementation of this multiple
esting procedure, we can apply the following steps:

1) Once H0i has been fixed for each site i, we compute:

υi = p(H1i|yi), (11)

according to the probability model assumed.
2) When controlling for the FDR, we compute t∗D according

to Eq. (10), where FDR(t) is given by Eq. (7-i). In prac-
tice, t∗D can be determined by computing FDR(t) for a finite
number of values of t, chosen in [0,1], for instance, t = 0.99,
0.98, . . . Then, t∗D will correspond to the minimum t such
that FDR(t) ≤ αD. These two steps are very easy to imple-
ment and more details are provided in Miranda-Moreno
(2006).

When the aim is to control the proportion of hotspots excluded
rom a list, decision makers may control the FNR(t) and min-
mize the FDR(t). For that, the multiple testing procedure
escribed above can be repeated in a similar fashion, with the
ifference that now the optimal cutoff t∗N is computed as,

∗
N = min{t ∈ [0, 1], FNR(t) ≤ αN}, (12)

here αN denotes the level at which the FNR(t) is to be con-
rolled.

. Hypotheses tests based on posterior distribution of
anks
In our previous discussion, we have shown that Bayesian
ypotheses tests may be formulated on the basis of the posterior
istribution of θi. The decision as to whether or not a site should
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e considered as a hotspot could also be made on the basis of
ts relative rank as compared to other sites. The rank of a site
(Ri) under the safety measure θi is defined as follows (Rao,
003),

i =
n∑

j=1

I(θi ≥ θj), (13)

here I(·) is an indicator function and the smallest θi has rank
. In other words, the greatest ranks correspond to the most
azardous sites. We define R = (R1, R1, . . ., Rn)′ as the rank
ector for a sample of n sites. Similar to the process of identifying
otspots based on θi described above, hotspots can be identified
n the basis of the ranks of the sites by testing the following
ypotheses,

H0i: Ri ≤ q (site i is referred to as non-hotspot),
H1i: Ri > q (site i is referred as hotspot),

here q is a standard or upper limit rank specified by the
ecision-makers. For instance, we can define q as a certain pro-
ortion of n, that is, q = γ × n, where γ is a percentage, e.g.,
0%, 80%, etc. This hypothesis test can be used when the inter-
st focuses on the identification of sites with ranks greater than a
ertain percentile value. Once H0i is established, the test statistic
i = p(H1i|yi) is computed under the posterior distribution of Ri,

hat is, υi = p(Ri > q|yi). The optimal cutoff t* is then determined
ccording to any of the multiple testing procedures defined in
he previous section.

In the present context, one of the advantages of the multiple
esting methods discussed above is that they can be used under
ny modeling settings currently available in the road safety liter-
ture. For instance, one can utilize an Empirical Bayes approach
mplemented via the negative binomial model or a full Bayesian
pproach applied via hierarchical Bayes models defined in the
ollowing section.

. Hierarchical Bayes models for accident data

Hierarchical Bayes models have been extensively applied for
odeling traffic accident data. These models can deal with prob-

ems of over-dispersion due to unobserved heterogeneities, and
llow the user to incorporate site-specific attributes and com-
lex variations, e.g., time and/or space patterns in the data.
n the present context, one major advantage is the flexibility
n terms of distributions that are offered, and the possibil-
ty to obtain posterior densities of the parameters of interest.
he most popular model in road safety is the Negative Bino-
ial or Poisson/Gamma model. This model is widely used

n part due to its computational advantages. However, less
ttention has been devoted to alternative models such as the
oisson/Lognormal model which may be more suitable for mod-

ling accident rates with a heavier-tailed distribution than the
amma (Winkelmann, 2003; Miranda-Moreno et al., 2005).
hese two models are defined next in a hierarchical Bayes frame-
ork. d
is and Prevention 39 (2007) 1192–1201

.1. Model framework

The set of independent observations for the n locations is rep-
esented by the vector y = (y1, y2, . . ., yn)′ with corresponding
ccident mean � = (θ1, θ2, . . ., θn)′. Here, we start by assuming
hat for each site i, the number of accidents over a period of time
Yi) follows an independent Poisson distribution with its mean
θi) defined by a regression model as follows (Winkelmann,
003):

i = exp(x′
iβ + εi). (14)

here xi = (1, xi1, . . ., xik)′ is a vector of covariates representing
ite-specific attributes, � = (β0, . . ., βk)′ is a vector of unknown
egression parameters, and εi represents the model error for site
. This expression (14) can be written as,

(i) θi = μiϑi ,

here μi = exp(x′
iβ) and ϑi = exp(εi). Commonly, ϑi is viewed

s an unmeasured heterogeneity due to omitted exogenous
ovariates and randomness. The hierarchical structure of the
odel is the following:

(i) Yi|θi
iid∼Poisson(θi),

(ii) ϑi|η ∼ πϑ(η) and η ∼ πη(.)

(iii) f (β) ∝ 1

(15)

This means that a prior distribution πϑ is assumed on the
rror parameter ϑi, which depends on another parameter η, with
rior πη. In addition, f(�) denotes the prior on the regression
arameters �, which is commonly assumed to be flat (normal)
r diffuse. A flat prior indicates that a mean equal to 0 and a
ery large variance is assumed on each of the regression param-
ters, e.g. βj ∼ N(0,1000). Furthermore, the parameters � and
, are mutually independent. According to the specification of
he priors πϑ and πη, two alternative models are defined as
ollows.

.2. Hierarchical Poisson/Gamma model

Based on the model framework defined in (15), the hierar-
hical Bayes (HB) version of the Poisson/Gamma model can be
ritten as (Carlin and Louis, 2000; Rao, 2003),

(i) ϑi|φ, δ ∼ Gamma(φ, δ)

(ii) φ ∼ Exponential(c)

(iii) δ ∼ Gamma(a, b)

(16)

here φ and δ are the shape and scale parameters of the Gamma
istribution. The hyper-parameters a, b and c have fixed values.
y specifying φ = δ, the hierarchical Negative Binomial (HNB)
odel is derived with the following assumptions,

ϑi|φ ∼ Gamma(φ, φ)
φ ∼ Exponential(c)
(17)

Notice that for a given value of φ, ϑi follows a Gamma
istribution with E[ϑi] = 1 and Var[ϑi] = 1/φ.
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.3. Hierarchical Poisson/Lognormal model

Instead of assuming a Gamma prior for ϑi, one can assume
n alternative probability density function such as the Lognor-
al. With this assumption, the hierarchical Poisson/Lognormal

HPL) model is written as follows (Rao, 2003):

(i) εi = log(ϑi)|σ2 ∼ Normal(0, σ2), and

(ii) σ−2 ∼ Gamma(a, b).
(18)

As in the previous models, the hyper-prior parameters a and
have fixed values and are specified by modelers.
These hierarchical Bayes models are argued to be more flex-

ble than the traditional two-stage Poisson models since more
tages of randomness can be considered (Carlin and Louis, 2000;
ao, 2003). These models have been also extended to allow

patial variations for modeling geographical dependence such
s the conditional auto-regressive or CAR models, and to the
ultivariate case (Miaou and Song, 2005).

.4. Bayesian inference and model selection

When working with hierarchical Bayesian models, posterior
istributions are not tractable algebraically in many cases, as is
he case for the models considered here. This problem can be
olved by generating a large number of samples from the pos-
erior distribution using Markov Chain Monte-Carlo (MCMC)
lgorithms. From these samples, posterior quantities of inter-
st are computed for the model parameters (Carlin and Louis,
000). In this paper, MCMC algorithms implemented in Win-
UGS, such as Gibbs and Metropolis-Hastings, are utilized for

his purpose. A test statistic υi for each site is also computed
sing the MCMC samples in order to apply the multiple testing
rocedures described previously.

To compare two alternative models (e.g., HNB versus HPL
odel), the popular Deviance Information Criterion (DIC) pro-

osed by Spiegelhalter et al. (2002) is utilized. This criterion
s very popular for Bayesian model selection and is based on
he posterior distribution of the deviance statistic defined as
θ = −2 log f(y|�). Formally, it may be written as,

IC = D̄ + pD = 2D̄ − D(θ̄), (19)

here pD = D̄ − D(θ̄) and D̄ is the posterior mean of the
eviance statistic, i.e., D̄ = E[−2 log f (y|θ)]. In addition,
(θ̄) = −2 log f (y|θ̄)], which means that the deviance is

btained by substituting on Dθ the posterior mean of � denoted
y θ̄. The model with the smallest DIC is defined as the model
hat would best fit the data.

. A case study

We start this section by describing the decision process that
ractitioners may follow in order to select a subgroup of candi-

ate sites based on any of the Bayesian tests defined previously.
his decision process is summarized in Fig. 1, where the first
tep is the model selection (for instance, HNB or HPL model),
hich can be done based on the DIC defined previously. As a

m
m
p

Fig. 1. Decision process for identifying hazardous locations.

econd step, the hypothesis test is defined according to the choice
f posterior distribution, p(θi|yi) or p(Ri|yi). As part of this step,
he critical limit values k and q must first be specified in order to
ompute the test statistic υi for each site under analysis. Finally,
Bayesian test is selected depending on the type of error rate

hat is to be controlled. If the Bayesian test with weights (BTW)
s applied, the weights of c0 and c1 must be designated by prac-
itioners. If the FDR or FNR test is applied, the levels of control
D or αN must be defined.

In this section, the application of the testing procedures dis-
ussed above is illustrated using empirical data. A sample of
ighway–railway intersections in Canada is considered as an
pplication environment. This is extracted from two databases
rovided by Transport Canada and the Transportation Safety
oard of Canada. One database consists of a grade crossing

nventory, including several crossing features such as types of
arning device, geometric characteristics and traffic conditions,

.g., posted road speed, maximum train speed, average annual
aily traffic, average daily trains, etc. The second database pro-
ides information on car-train accidents for several years. These
atabases have been used by the same authors in previous work
Miranda-Moreno et al., 2005). Here, we consider a sample of
ublic crossings with gates as main warning devices, which
omprises approximately 1773 grade crossings, as well as the
istory of accidents of the period 1997–2001 (5 years of accident
nformation). According to our previous work, we consider as a
easure of traffic exposure the natural logarithm of the product

f average daily trains and average annual daily traffic (AADT).

.1. Model calibration and selection
For model calibration, the hyper-parameter c of the HNB
odel might be fixed in advance. In this study, we follow a
ore reasonable approach by taking advantage of the dispersion

arameter estimate (φ̂) obtained by maximizing the NB marginal
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ikelihood. That is, we first calibrate the NB model to the studied
ataset which yields a dispersion parameter of φ̂ = 0.64. Based
n the fact that the expectation of the Exponential hyper-prior
or φ is 1/c, we can then assume that E(φ|c) = 1/c = 0.64, from
hich c = 1.56. For the HPL model, a vague or non-informative
yper-prior is assumed for σ−2 with both parameters a and b,
qual to 0.001. This suggests a mean equal to 1 and a very large
ariance. We refer to Washington and Oh (2006) for more discus-
ions on how to incorporate prior knowledge under a Bayesian
ramework.

Once the hyper-parameters are fixed, posterior distributions
f model parameters are sampled using WinBUGS 1.4. In this
tudy, 6000 simulation iterations were carried out for each
arameter of interest, using the first 1000 samples as burn-in
terations. In order to select the crossing attributes to be included
n the final model, we first obtained the posterior expected values
f all the regression coefficients, along with their standard devia-
ions and 95% confidence intervals. From those, we only selected
he attributes whose regression coefficients did not contain 0 in
he 95% confidence intervals, i.e., regression parameters signif-
cantly different from zero at the 95% confidence level. These
rossing attributes are: (1) road type represented as a binary vari-
ble (road type = 1 for arterials or collectors, and 0 otherwise),
2) posted road speed, and (3) traffic exposure computed as a
unction of daily traffic (AADT) and daily trains.

The posterior summary of the regression coefficients � along
ith the dispersion parameters φ and σ2 were computed for both

he HNB and HPL models. The results are presented in Table 2.
he posterior mean of each regression coefficient, expect β0, is
ositive, making sense from a safety point of view and confirm-
ng the results obtained in our previous works (Miranda-Moreno
t al., 2005). In addition, from the DIC results presented in the
ame table, we can see that a better fit to the data was obtained
hen applying the HNB model. The DIC value computed with

he HNB model is smaller than the one obtained with the HPL
odel.
.2. Some results

The implementation of multiple testing methods involves dif-
erent decision parameters which can have a significant impact

able 2
ummary of model calibration results

odel Parameters Posterior
mean

S.E. 95% Conf. interval

NB Intercept (β0) −6.429 0.717 (−7.764, −4.955)
Road type (β1) 0.499 0.164 (0.171, 0.815)
Posted road speed (β2) 0.011 0.005 (0.001, 0.021)
Traffic exposure (β3) 0.323 0.054 (0.214, 0.429)
φ 0.691 0.237 (0.381, 1.332)
Goodness of fit measure: DIC = 1191.25

PL Intercept (β0) −7.041 0.718 (−8.316, −5.657)
Road type (β1) 0.506 0.172 (0.167, 0.842)
Posted road speed (β2) 0.011 0.005 (0.001, 0.022)
Traffic exposure (β3) 0.327 0.049 (0.228, 0.421)
σ2 1.034 0.338 (0.596, 2.012)
Goodness of fit measure: DIC = 1250.40

l
b
t
a
e

T
N
m

T

F
B
B
F

is and Prevention 39 (2007) 1192–1201

n the size as well as composition of the final hotspot list. In
his section, we present some results of a sensitivity study to
llustrate the effects of these parameters, including:

a. type of error rates: BTW, FDR or FNR,
b. posterior distributions: θi versus Ri,
c. model choice: HNB versus HPL model,
. control levels: αD and αN.

For this analysis, the following values were assumed for k
nd q:

k = 0.18 for H0i: θi ≤ k. This k-value is fixed according to Eq.
(2), where the observed average number of accidents (ȳ) in the
dataset studied is approximately 0.12, the standard deviation
(s) is 0.4 and we consider that z0 = 1.5 standard deviations.
This standard value is fixed using the empirical information
about accident frequency, independent of the model assump-
tions.
q = 1418 for H0i: Ri ≤ q. This q-value corresponds to a
γ = 80th percentile of the ranks where n = 1773 locations, that
is, q = 0.8 × 1773.

.2.1. Effect of different error rates
To illustrate the effect of the use of alternative error rates, we

onsider the following control levels and weights under the two
ypotheses defined before and the HNB model:

A control level αD = 10%, when using the false discovery rate
procedure, that is, the list selected is expected to contain at
most 10% of non-hazardous sites,
A control level αN = 10%, when applying false negative rate
method, that is, at most 10% of non-hotspots are expected to
be hazardous,
Two sets of weights when using the Bayesian test with weights
(BTW): c0 = 2 and c1 = 1 (i.e., a false discovery is twice as
costly as a false negative) and c0 = 1, c1 = 2 (i.e., a false neg-
ative is twice as costly as a false positive).

These results are given in Table 3. As expected, the hotspot
ist obtained when limiting the FDR is less than the list identified

y controlling the FNR. While aiming at controlling FDR has
he advantage of having a smaller list of hotspots, it suffers from

higher FNR. Conversely, the approach of controlling FNR
nsures that the true dangerous sites are not missed, but it does

able 3
umber of hotspots identified with different Bayesian tests (Using the HNB
odel)

esting method For H1i: θ > 0.18 For H1i: Ri > 1418

Threshold Number of
intersections

Threshold Number of
intersections

DR(t) ≤ 10% t∗D = 0.80 36 t∗D = 0.80 37
TW, c0 = 2, c0 = 1 t∗c = 0.67 93 t∗c = 0.67 95
TW, c0 = 1, c1 = 2 t∗c = 0.33 282 t∗c = 0.33 283
NR(t) ≤ 10% t∗N = 0.27 464 t∗N = 0.27 474
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ig. 2. Comparison of υi-values under H1i: θ > 0.18: HNB vs. HLN model.

o at the cost of defining safe sites as hotspots. Furthermore, it
an be noted that for a reasonable range of values of c0 and c1,
he results from the BTW were bounded by the ones obtained
ith the FDR and FNR procedures. This suggests that the BTW

an be used as an alternative to achieve a balance between FDR
nd FNR.

.2.2. Posterior distribution effect, θi versus Ri

A fair comparison of the performance of the posterior of
anks versus the posterior distribution of θi may not be easy,
s we are dealing with two totally different types of hypothe-
es. For instance, in testing H0i: θi ≤ k and H0i: Ri ≤ q, the
esulting list largely depends on the upper limit values k and
, chosen for both hypotheses. However, it may happen in some
ituations that the two tests produce very similar lists. An exam-
le of that can be seen in Table 3, with k = 0.18 and q = 1418,
here the choice was made to yield lists of the same number of

ites.

.2.3. Impact of the model type
The effect of model choice is illustrated in Fig. 2, where

he υi-values of the two alternative models are compared under
he same hypothesis, H1i: θi ≤ 0.18. In this figure, we can
bserve relevant differences in the υi-values coming from two
lternative models, specifically for υi-values between 0.2 and
.6. In this range, the HPL tends to produce larger υi-values
han the HPL. This happens to be for crossings with very
arge traffic exposure but no accident history. In this partic-
lar case, the output seems to be relatively sensitive to the
yper-prior assumptions on the dispersion parameter (Miranda-
oreno, 2006). Obviously, the model choice may have a

ignificant effect on the hotspot list size. For instance, under
he same hypothesis test we see in Fig. 3a that the lists iden-

ified with the FDR test and HNB model can be up to 30%
arger than those detected with the HPL model. An impor-
ant impact can also be observed when applying the FNR test
Fig. 3b).

•

ig. 3. Influence of the control levels (αD and αN) on the hotspot list size.

.2.4. Effects of αD and αN

The results shown in Fig. 3a and b also indicate that the crit-
cal level of controls αD and αN have a significant impact on the
ize of the hotspot list. Obviously, the number of hotspots iden-
ified under either error rate is a function of the control levels.
ery small values of αD produce very small hotspot lists. Con-
ersely, very small values of αN produce very large hotspot lists.
his result is expected, signifying the importance of selecting
n appropriate critical error rate before a hotspot identification
rocess is initiated.

In summary, practitioners should be informed that the number
f sites that are considered to be hotspots depends on many
actors, including:

The minimum acceptable level of risk that is used in the
hypothesis tests (i.e., k or q). For example, H0i: θi ≤ 0.12
would gives larger lists than H0i: θi ≤ 0.18.
The type of error rates used in controlling the overall deci-
sion error (i.e., FDR or FNR). FNR gives larger list than
FDR.
Level of control on the error rates. For example, controlling

FDR(t) ≤ 5% gives a smaller list than controlling FDR(t) ≤
10%, and FNR(t) ≤ 10% gives a smaller list than FNR(t) ≤
5%.
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. Conclusions

Two Bayesian testing procedures have been introduced for
otspot identification. These procedures can be used not only
or ranking a group of locations but also for selecting a list
f sites for further engineering safety inspections with a target
rror rate. They afford practitioners the opportunity to account
or uncertainty in model parameters and safety measures while
inimizing the false discovery rate (FDR) or false negative rate

FNR) in the selection process.
In particular, the FDR and FNR based procedures are con-

enient when we want to control the expected rates of false
ositives or false negatives among the subgroup of locations
esignated as hotspots. These methods are argued to be more
owerful than competing ones, having a natural interpretation
nd being straightforward in their application. When using the
ayesian test with weights, practitioners need to designate the
eights of c0 and c1. Under a safety improvement program with

arge budget constrains, c0 should be assigned a larger value than
1. Moreover, when we want to minimize simultaneously both
rror rates, comparable values should be given to c0 and c1. In
ddition, from a social perspective, we should ideally concen-
rate on the control of FNR in order to minimize the number of
otspots excluded from a list for further safety inspections. Fur-
hermore, the FDR criterion is economically interpretable since
he posterior expected FDR gives the expected proportion of the
nvestment that could be wasted on false leads.

In this paper, we have also shown how both the posterior
istribution of accident frequency and posterior distribution of
anks can be used to carry on hypothesis tests. Mainly, the choice
f one approach over the other should be motivated by the practi-
ioner’s interest. If the interest is the relative ranking of locations,
nference based on the posterior distribution of ranks is more effi-
ient than posterior distribution of the mean number of accidents.
owever, when the group of locations under consideration (n) is

elatively large, the computation of the posterior distribution of
anks can be more challenging. A simulation study designed to
ompare these alternative ranking methods is the subject of our
urrent research. Note that when using empirical accident data,
e do not have the ground truth information (a priori) about
hich sites are truly dangerous. In contrast, when working with

imulated data we have the advantage of starting with the true
afety state of each site and hence, can establish the ones that are
ruly hotspots. By comparing the expected versus observed (true)
rror rates we can then assess the method’s power to detect the
rue hotspots (Miranda-Moreno, 2006). This approach of using
imulated data to validate a new methodology or model has been
idely used in the field of statistics.
This research has adopted a hierarchical Poisson framework

hat has widely been recommended for modeling accident data
ith substantial sources of variations due to unobserved hetero-
eneity and space-time trends. Our case study indicated that the
odel choice may have an important impact on the results of the
otspot selection process. This can be due to the low accident
requency of the studied dataset and the hyper-prior assumptions
n the dispersion parameter (the use of diffuse priors). Given that
he model choice may be relevant in such cases, we recommend

P

is and Prevention 39 (2007) 1192–1201

hat several models should be applied to the same dataset, and
goodness-of-fit analysis performed in order to select the best
odel. The performance of alternative hyper-prior assumptions,
odels and safety measures is also part of our current research.
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